作者:
原文服务方: 微电子学与计算机       
摘要:
在标准粒子群优化算法的每一次迭代中,粒子都是同时更新,然而在现实世界中(比如鸟群)粒子的更新并不是同时的.模拟现实的鸟群更新,找到一种异步粒子群优化算法.异步粒子群优化算法是将粒子的更新顺序进行改进,在每次迭代中将所有粒子按适应度的优劣排序,从而每个粒子在更新时都能利用到当代群体的信息,所以算法更易于收敛.提出一种基于异步粒子群优化算法的图像分割方法,用异步粒子群优化算法自适应选取图像的分割阈值.实验表明,与基本的粒子群优化算法相比,该算法比较稳定,易于收敛到最优解,分割速度较快.
推荐文章
基于粒子群优化算法的Kapur熵多阈值图像分割
图像分割
多阈值图像分割
粒子群优化算法
Kapur熵
基于粒子群优化算法和模糊熵的多级阈值图像分割算法
图像分割
粒子群优化算法
模糊熵
香农熵
鲁棒性
目标函数
粒子群优化的多阈值图像自分割算法
粒子群优化
自适应滤波
Otsu算法
多阈值
图像自分割
结合粒子群算法优化归一割的图像阈值分割方法
阈值分割
归一化割
粒子群算法
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于异步粒子群优化算法的图像分割方法
来源期刊 微电子学与计算机 学科
关键词 图像分割 粒子群优化算法 异步 更新顺序
年,卷(期) 2009,(4) 所属期刊栏目
研究方向 页码范围 174-177
页数 4页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张磊 江苏科技大学电子信息学院 18 82 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (11)
参考文献  (2)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (5)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像分割
粒子群优化算法
异步
更新顺序
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导