作者:
原文服务方: 微电子学与计算机       
摘要:
本文提出了一种基于改进谱聚类与粒子群优化的图像分割算法。该算法利用双树复小波变换系数,求得能量均值构造相似性矩阵,充分利用了待聚类数据所包含的空间邻近信息和特征相似性信息。在谱映射的过程中,采用了Nystr迸m逼近策略,降低了谱聚类算法的复杂度和内存消耗,然后在进行K均值聚类时使用粒子群优化算法。最后,通过对医学图像和遥感图像分割验证了新算法的有效性。
推荐文章
基于动态粒子群优化与K-means聚类的图像分割算法
图像分割
动态粒子群优化
K-means聚类
适应度方差
聚类算法
DPSOK
基于混沌粒子群和模糊聚类的图像分割算法
图像分割
混沌粒子群算法
模糊C-均值聚类
全局优化
分数阶粒子群的模糊聚类图像分割算法研究
模糊C-均值聚类
初始聚类中心
分数阶粒子群
自适应调整
步长控制因子
图像分割
基于异步粒子群优化算法的图像分割方法
图像分割
粒子群优化算法
异步
更新顺序
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进谱聚类与粒子群优化的图像分割算法
来源期刊 微电子学与计算机 学科
关键词 图像分割 粒子群 谱聚类 Nystr迸m逼近
年,卷(期) 2013,(7) 所属期刊栏目
研究方向 页码范围 51-54,59
页数 5页 分类号 TP312
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨锋 重庆大学自动化学院 1 6 1.0 1.0
2 柴毅 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (246)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (15)
二级引证文献  (5)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(4)
  • 引证文献(2)
  • 二级引证文献(2)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像分割
粒子群
谱聚类
Nystr迸m逼近
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导