基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Computing the sign of the determinant or the value of the determinant of an n × n matrix A is a classical well-know problem and it is a challenge for both numerical and algebraic methods. In this paper, we review, modify and combine various techniques of numerical linear algebra and rational algebraic computations (with no error) to achieve our main goal of decreasing the bit-precision for computing detA or its sign and enable us to obtain the solution with few arithmetic operations. In particular, we improved the precision bits of the p-adic lifting algorithm (H = 2h for a natural number h), which may exceed the computer precision β (see Section 5.2), to at most bits (see Section 6). The computational cost of the p-adic lifting can be performed in O(hn4). We reduced this cost to O(n3) by employing the faster p-adic lifting technique (see Section 5.3).
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Combining Algebraic and Numerical Techniques for Computing Matrix Determinant
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 MATRIX DETERMINANT Sign of the DETERMINANT P-ADIC Lifting Modular DETERMINANT MATRIX FACTORIZATION Bit-Precision
年,卷(期) 2014,(5) 所属期刊栏目
研究方向 页码范围 464-473
页数 10页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MATRIX
DETERMINANT
Sign
of
the
DETERMINANT
P-ADIC
Lifting
Modular
DETERMINANT
MATRIX
FACTORIZATION
Bit-Precision
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导