基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
气象数据挖掘是近年来研究的热点,组合分类器能够实现协同计算以提高效率和准确性,就此本文采用数据挖掘方法中的决策树组合分类器对某地气象进行了气温预测,主要依据C4.5经典算法、Bagging集成方法构建组合决策树,并加入协同的思想建立了预测气温的决策树协同分析模型.实验表明,基于Bagging的决策树协同模型对于局部区域的气温预测具有较高的准确率.
推荐文章
基于改进决策树分类算法的遥感影像分类研究
决策树
分形
纹理特征
毯覆盖模型
遥感影像分类
基于决策树的流量分类方法
流量分类
网络测量
网络流
决策树
统计属性
基于优化决策树的短期电力负荷预测
短期负荷预测
决策树
粗糙集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于决策树组合分类器的气温预测
来源期刊 广东工业大学学报 学科 工学
关键词 Bagging C4.5算法 组合分类器 协同 气温预测
年,卷(期) 2014,(4) 所属期刊栏目 ? 综合研究?
研究方向 页码范围 54-59
页数 6页 分类号 TP311.13
字数 3911字 语种 中文
DOI 10.3969/j.issn.1007-7162.2014.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 滕少华 广东工业大学计算机学院 121 825 15.0 20.0
2 张巍 广东工业大学计算机学院 62 412 11.0 15.0
3 李俊磊 广东工业大学计算机学院 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (62)
参考文献  (15)
节点文献
引证文献  (10)
同被引文献  (16)
二级引证文献  (3)
1986(3)
  • 参考文献(0)
  • 二级参考文献(3)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(8)
  • 参考文献(1)
  • 二级参考文献(7)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(9)
  • 参考文献(1)
  • 二级参考文献(8)
2005(10)
  • 参考文献(1)
  • 二级参考文献(9)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(17)
  • 参考文献(2)
  • 二级参考文献(15)
2008(10)
  • 参考文献(3)
  • 二级参考文献(7)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
Bagging
C4.5算法
组合分类器
协同
气温预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广东工业大学学报
双月刊
1007-7162
44-1428/T
16开
广东省广州市东风东路729号
1974
chi
出版文献量(篇)
2262
总下载数(次)
2
总被引数(次)
11966
论文1v1指导