基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
极限学习机基于一种典型的单隐层前馈神经网络(SLFNs),其有效性在模式识别很多领域得到证实。该文针对当前的测谎方法的准确率不够高及训练时间较长的缺点,将ELM算法应用到测谎研究领域,作为分类器,对说谎者和诚实者的两类脑电信号进行分类识别,并将实验结果和三类典型的分类器:支持向量机(SVM)、人工神经网络(ANN)和线性分类器(FDA)的分类结果进行比较。实验结果表明,该方法不仅获得最高的训练和测试准确率,而且训练时间也大为缩短,证明了该方法的测谎有效性。
推荐文章
基于P300和机器学习的测谎方法研究
测谎
独立成分分析
脑电
P300两步降噪
支持向量机
基于相锁值的脑电测谎方法
测谎
溯源
EEG
脑网络
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于P300和极限学习机的脑电测谎研究
来源期刊 电子科技大学学报 学科 医学
关键词 脑电 极限学习机 测谎 神经网络 P300 支持向量机
年,卷(期) 2014,(2) 所属期刊栏目 生物电子学
研究方向 页码范围 301-305
页数 5页 分类号 R318
字数 4687字 语种 中文
DOI 10.3969/j.issn.1001-0548.2014.02.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 官金安 中南民族大学认知科学国家民委重点实验室 34 181 7.0 11.0
2 杨勇 江西财经大学信息技术学院 27 193 8.0 13.0
3 高军峰 中南民族大学认知科学国家民委重点实验室 14 22 3.0 4.0
7 张文佳 中南民族大学认知科学国家民委重点实验室 2 8 1.0 2.0
8 胡佳佳 中南民族大学认知科学国家民委重点实验室 1 7 1.0 1.0
9 陶春毅 中南民族大学认知科学国家民委重点实验室 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (7)
同被引文献  (15)
二级引证文献  (19)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(5)
  • 引证文献(2)
  • 二级引证文献(3)
2018(8)
  • 引证文献(2)
  • 二级引证文献(6)
2019(9)
  • 引证文献(1)
  • 二级引证文献(8)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
脑电
极限学习机
测谎
神经网络
P300
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技大学学报
双月刊
1001-0548
51-1207/T
大16开
成都市成华区建设北路二段四号
62-34
1959
chi
出版文献量(篇)
4185
总下载数(次)
13
总被引数(次)
36111
论文1v1指导