基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Image analysis and computer vision are interested in suitable methods to solve the nonlinear equations. Coordinate x??for f (x)?= 0?is crucial because each equation can be transformed into f (x)?= 0. A novel method of Hurwitz-Radon Matrices (MHR) can be used in approximation of a root of function in the plane. The paper contains a way of data approximation via MHR method to solve any equation. Proposed method is based on the family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional data are represented by discrete set of curve??f points. It is shown how to create the orthogonal OHR operator and how to use it in a process of data interpolation. MHR method is interpolating the curve point by point without using any formula or function.
推荐文章
关于Hurwitz zeta函数的均值公式
Hurwitz zeta函数
均值公式
渐近公式
Hurwitz级数环的主理想升链条件
无挠模
Hurwitz级数环
archimedean整环
主理想升链条件
Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sul
Proline
Coal gangue
Pollution control
Heavy metal fraction
Mineralogical characteristics
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Solution of Nonlinear Equations via the Method of Hurwitz-Radon Matrices
来源期刊 电脑和通信(英文) 学科 数学
关键词 Image Analysis Nonlinear Equation Root of Function CURVE INTERPOLATION Hurwitz-Radon
年,卷(期) 2014,(10) 所属期刊栏目
研究方向 页码范围 9-16
页数 8页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Image
Analysis
Nonlinear
Equation
Root
of
Function
CURVE
INTERPOLATION
Hurwitz-Radon
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导