基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
常规永磁操动机构的动作时间补偿的预测是采用加权平均值算法、多元线性回归法和人工神经网络算法(ANN)等对动触头的分/合闸时间进行估计和预测,但是加权平均系数的计算和线性回归系数的求解比较繁琐,而ANN网络具有训练速度慢、容易陷入局部极小点、学习率的选择难以确定等诸多缺点.研究了采用极限学习机(ELM)算法和BP神经网络算法,利用Matlab软件对永磁机构动作时间进行预测,通过对比分析,得到性能较好的算法.
推荐文章
基于极限学习机的模拟电路测试生成算法
模拟电路
测试生成算法
分类算法
极限学习机
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
基于极限学习机的迁移学习算法
迁移学习
极限学习机
三维模型分类
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于极限学习机算法的永磁机构动作时间补偿的研究
来源期刊 低压电器 学科 工学
关键词 永磁机构 极限学习机算法 BP神经网络 时间预测
年,卷(期) 2014,(2) 所属期刊栏目 研究与分析
研究方向 页码范围 13-17
页数 5页 分类号 TM561
字数 2402字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵士良 上海电机学院电气学院 8 33 3.0 5.0
2 迟长春 上海电机学院电气学院 60 93 5.0 7.0
3 练正兵 上海电机学院电气学院 6 17 2.0 4.0
4 张祯海 上海电机学院电气学院 7 20 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
永磁机构
极限学习机算法
BP神经网络
时间预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电器与能效管理技术
半月刊
2095-8188
31-2099/TM
大16开
上海市武宁路505号
4-200
1959
chi
出版文献量(篇)
6528
总下载数(次)
20
总被引数(次)
27383
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导