基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
定值-引用类错误是一类非常重要且常见的错误.当前,对这类错误的检测很难同时达到高精度和高可扩展性.通过合理组合敏感和不敏感的检测方法并控制两类方法的实施范围,可以同时达到高检测精度和高可扩展性.提出一种新颖的场景敏感的检测方法,该方法根据触发状态对潜在错误语句分类,识别不同类别语句的触发场景并实施不同开销的检测,在不降低精度的同时最小化检测开销.设计了一个多项式时间复杂度的流敏感、域敏感和上下文敏感的场景分析以进行分类,并基于程序依赖信息识别触发场景,仅对必要的触发场景实施路径敏感的检测.为上述方法实现了一种原型系统——Minerva.通过使用空指针引用错误检测为实例研究以及总代码规模超过290万行,最大单个应用超过200万行的应用验证,用例实验结果表明,Minerva的平均检测时间比当前先进水平的路径敏感检测工具Clang-sa和Saturn分别快3倍和46倍.而Minerva的误报率仅为24%,是Clang-sa和Saturn误报率的1/3左右,并且Minerva未发现漏报已知错误.上述数据表明,所提出的场景敏感的错误检测方法可同时获得高可扩展性和高检测精度.
推荐文章
一种内存错误的动态检测方法
内存错误检测
动态检测
检测扩展
一种智慧矿山场景下的目标检测方法
智慧矿山
YOLOv3
k-means 聚类算法
锚点框
Darknet-31
MINE 数据集
一种高效的图像边缘检测新方法
边缘检测
计算机视觉
标准差算子
门限分割
一种移动视频通信中的错误隐藏方法研究
错误隐藏
移动信道
视频通信
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种场景敏感的高效错误检测方法
来源期刊 软件学报 学科 工学
关键词 定值-引用错误 路径敏感错误检测 错误目标触发场景 场景敏感 程序分析
年,卷(期) 2014,(3) 所属期刊栏目 理论计算机科学
研究方向 页码范围 472-488
页数 17页 分类号 TP311
字数 13976字 语种 中文
DOI 10.13328/j.cnki.jos.004419
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (80)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (2)
1953(2)
  • 参考文献(0)
  • 二级参考文献(2)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(13)
  • 参考文献(2)
  • 二级参考文献(11)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
定值-引用错误
路径敏感错误检测
错误目标触发场景
场景敏感
程序分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导