基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为检测旁车道车辆驾驶员的并线意图,利用机器学习技术基于模糊支持向量机建立了并线意图识别器.识别器的训练样本由实际交通环境中的车辆并线数据获得,包括主车道与旁车道车辆的7个运动属性,其中对不能直接利用传感器信息获取的属性由Kalman滤波器预估得到.由于在并线初始时刻的并线样本不能有效区别于非并线样本,所以在支持向量机的求解中引入样本模糊隶属度系数以提高并线意图识别器训练的准确性,同时对支持向量机中的参数基于交互检验正确率进行网格优化.在实际交通环境中对并线意图识别器进行了试验,结果表明,识别器工作有效,经过简单处理后的识别结果可有效反映驾驶员的并线意图.
推荐文章
基于支持向量机的煤岩界面识别方法
煤岩界面识别
小波包分解
支持向量机
基于支持向量机的通信信号调制识别方法研究
支持向量机
模式识别
调制信号
识别分类
基于核主元分析的支持向量机识别方法研究
核主元分析
支持向量机
分类
识别
基于聚类算法和层次支持向量机的人脸识别方法
聚类算法
层次支持向量机
免疫算法
小波变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊支持向量机的旁车道车辆并线意图识别方法
来源期刊 汽车工程 学科
关键词 驾驶员辅助系统 并线意图识别 模糊支持向量机
年,卷(期) 2014,(3) 所属期刊栏目 论文
研究方向 页码范围 316-320
页数 5页 分类号
字数 3795字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘昭度 北京理工大学机械与车辆学院 123 1496 20.0 32.0
2 齐志权 北京理工大学机械与车辆学院 53 631 14.0 23.0
3 裴晓飞 北京理工大学机械与车辆学院 18 262 9.0 16.0
4 马国成 北京理工大学机械与车辆学院 19 304 9.0 17.0
5 王宝锋 北京理工大学机械与车辆学院 10 109 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (68)
二级引证文献  (28)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(9)
  • 引证文献(2)
  • 二级引证文献(7)
2018(10)
  • 引证文献(2)
  • 二级引证文献(8)
2019(8)
  • 引证文献(0)
  • 二级引证文献(8)
2020(7)
  • 引证文献(3)
  • 二级引证文献(4)
研究主题发展历程
节点文献
驾驶员辅助系统
并线意图识别
模糊支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导