基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cells. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth.
推荐文章
用Cell组件生成测试报表
Cell组件
ActiveX控件
测试报表
探讨LTE small cell回传切换策略
LTE-small cell
CSG
回传切换
延迟
基于Hadoop的FP-Growth关联规则并行改进算法
FP-Growth算法
Hadoop
数据分割
负载均衡
基于Spark的PFP-Growth并行算法优化实现
并行化
Spark
关联挖掘
PFP-Growth
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone
来源期刊 应用数学(英文) 学科 医学
关键词 ANISOTROPIC Diffusion Cell Detection Growth Plate MOUSE RETINEX
年,卷(期) 2014,(18) 所属期刊栏目
研究方向 页码范围 2866-2880
页数 15页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ANISOTROPIC
Diffusion
Cell
Detection
Growth
Plate
MOUSE
RETINEX
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导