作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数形结合作为一种重要的数学思想方法,历年来都是高考考查的重点之一。数形结合指的是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。通过数形结合思想,能够将抽象的数学语言与直观的几何图像有机结合,化抽象为直观,从而使问题得到简捷解决。
推荐文章
数形结合思想在高考解题中的应用
数形结合思想
高考解题
应用
数形结合在解题中的应用
数形结合
解题思路
以形辅数
数形结合在高中数学解题中的应用研究
数形结合
高中数学
解题研究
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 数形结合在高考解题中的妙用
来源期刊 高考 学科
关键词 数形结合 高考 解题
年,卷(期) 2014,(10) 所属期刊栏目 高分突破
研究方向 页码范围 1-1
页数 1页 分类号
字数 626字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄紫敬 华南师范大学数学科学学院 6 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数形结合
高考
解题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高考
月刊
1673-6265
22-1372/G4
16开
吉林省长春市
12-240
2004
chi
出版文献量(篇)
2185
总下载数(次)
4
总被引数(次)
1308
论文1v1指导