基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
历史负荷数据是电力系统进行负荷预测的基础,历史数据异常将会影响负荷预测的准确性和有效性,因此需要对负荷数据进行异常数据辨识.本文以某一节点负荷数据为研究对象,提出一种基于二次聚类算法的异常电力负荷数据辨识方法.运用数据挖掘中模糊聚类算法并结合有效指数准则对负荷曲线进行一次聚类;将一次聚类结果结合神经网络实现对负荷曲线的二次聚类,提取出日负荷特征曲线;根据负荷曲线的相似性和平滑性,辨识异常负荷数据.算例分析结果表明,此方法效果良好.
推荐文章
基于K-均值聚类的工业异常数据检测
遥测与遥信数据
异常检测
时序特征
聚类
基于改进聚类算法的Web异常数据挖掘软件设计
Web网络
异常数据
数据挖掘
软件开发
堆栈弹出
K-means算法
基于改进二次模态分解和BiLSTM-Attention的 短期电力负荷预测
二次模态分解
分解损失
注意力机制
双向长短期神经网络
短期电力负荷预测
基于最优K均值聚类算法的负荷大数据任务均衡调度研究
最优 K 均值
大数据聚类
电力负荷
跨源调度
关联特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二次聚类的电力负荷异常数据辨识
来源期刊 电气技术 学科
关键词 二次聚类 电力负荷 异常数据辨识
年,卷(期) 2014,(11) 所属期刊栏目 研究与开发
研究方向 页码范围 1-3,17
页数 4页 分类号
字数 2703字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王珂 东南大学电气工程学院 87 44 3.0 5.0
2 王天秀 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (131)
参考文献  (9)
节点文献
引证文献  (9)
同被引文献  (42)
二级引证文献  (39)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(8)
  • 参考文献(0)
  • 二级参考文献(8)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(12)
  • 参考文献(2)
  • 二级参考文献(10)
2011(8)
  • 参考文献(3)
  • 二级参考文献(5)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(5)
  • 引证文献(4)
  • 二级引证文献(1)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(14)
  • 引证文献(2)
  • 二级引证文献(12)
2019(17)
  • 引证文献(1)
  • 二级引证文献(16)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
二次聚类
电力负荷
异常数据辨识
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气技术
月刊
1673-3800
11-5255/TM
大16开
北京市西城区莲花池东路102号天莲大厦10层
2000
chi
出版文献量(篇)
6373
总下载数(次)
15
总被引数(次)
19291
论文1v1指导