基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服极限学习机输入权重与偏置的随机性对模型泛化能力的负面影响,提出一种基于多目标优化的极限学习机模型选择方法将极限学习机模型选择视为一个多目标全局优化问题,可将泛化误差和输出权重的模作为优化目标;为加快优化速度,引入极限学习机的快速留一法误差估计指代泛化误差,并考虑到优化目标间的互斥性,最终采用多目标综合学习粒子群算法寻找非支配解.通过5个UCI回归数据集上的仿真结果表明,与常用极限学习机模型选择方法相比,改进方法均取得更低的预测误差,同时网络结构更加紧凑.
推荐文章
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
在线增量极限学习机及其性能研究
极限学习机
增量学习
在线学习
广义逆
在线增量极限学习机
改进极限学习机的电子音乐分类模型
音乐分类
核主成分分析
极限学习机
音乐特征
遗传算法
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 极限学习机多目标模型选择研究
来源期刊 计算机仿真 学科 工学
关键词 极限学习机 多目标优化 模型选择
年,卷(期) 2014,(8) 所属期刊栏目 仿真智能化
研究方向 页码范围 387-391
页数 5页 分类号 TP181
字数 3343字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毛文涛 河南师范大学计算机与信息工程学院 34 174 8.0 11.0
2 王礼云 河南师范大学计算机与信息工程学院 3 17 2.0 3.0
3 胡武鹏 河南师范大学计算机与信息工程学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (50)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (18)
二级引证文献  (7)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
极限学习机
多目标优化
模型选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
论文1v1指导