原文服务方: 计算机测量与控制       
摘要:
针对LS-SVM算法中小波提取特征存在小波基函数选择和小波分解层次、系数选取的问题,提出了一种基于因子分析技术的故障特征识别方法;该方法通过构建采样数据的相关矩阵求出因子载荷和因子得分,按照累计贡献率自动提取出1~3个因子组成特征向量,从而降低了输入维度,提高了算法训练诊断效率,降低了收敛难度;四运放典型电路的仿真实验结果表明:文中算法的诊断正确率超过了同类方法,同时提高了训练时间和诊断效率.
推荐文章
基于小波分析的最优故障特征提取研究
故障特征提取
小波分析
四运放电路
克隆选择算法
模拟电路
基于EMD-HT的齿轮箱故障特征提取技术研究
齿轮箱
EMD-HT变换
故障诊断
特征提取
基于非线性特征提取的模拟电路状态识别研究
非线性
特征提取
状态监测
支持向量机
粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于因子分析的模拟电路故障特征提取技术研究
来源期刊 计算机测量与控制 学科
关键词 因子分析 故障特征 因子得分 特征向量
年,卷(期) 2014,(11) 所属期刊栏目 自动化测试技术
研究方向 页码范围 3470-3472
页数 3页 分类号 TP3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王月海 北方工业大学信息工程学院 27 126 6.0 11.0
2 潘国庆 5 15 2.0 3.0
3 冯建呈 9 14 2.0 3.0
4 卢俊 北方工业大学信息工程学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (24)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (25)
二级引证文献  (29)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(17)
  • 引证文献(3)
  • 二级引证文献(14)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
因子分析
故障特征
因子得分
特征向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导