作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
[目的]在地理信息系统GIS的平台上,将不确定性推理方法——贝叶斯网络引入病害预测,基于关键气象因子(温度、降水、湿度、日照)构建一个用于预测小麦条锈病发生概率的贝叶斯网络模型.[方法]采用预测日前7d的气象数据预测自预测日起7d内的条锈病发病概率,并对我国小麦条锈病重要流行区域——甘肃省东南部地区2010 ~ 2012年病害发生情况进行预测.[结果]模型在返青期至乳熟期输出的病害发生概率与实际调查结果吻合度分别为62.92%、63.18%、79.48%、94.75%,能够较客观地反映病害发生的时间规律和空间分布特点.[结论]该研究表明将贝叶斯网络和GIS分析结合在较大的空间范围内利用关键气象因子进行小麦条锈病短期预测是一种可行的途径.
推荐文章
基于贝叶斯网络的内部威胁预测研究
内部威胁
贝叶斯网络
网络攻击图
似然加权法
山西省小麦条锈病流行趋势预测模型研究
小麦
条锈病
流行趋势
预测模型
山西省
基于预测能力的贝叶斯网络分类器学习
贝叶斯网络
分类器
预测能力
基于贝叶斯网络的跳频序列多步预测
跳频序列
贝叶斯网络
相空间重构
多步预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯网络的小麦条锈病预测研究
来源期刊 安徽农业科学 学科 农学
关键词 小麦条锈病 气象因子 贝叶斯网络 预测模型
年,卷(期) 2014,(16) 所属期刊栏目 农来灾害防御
研究方向 页码范围 5027-5030
页数 4页 分类号 S126
字数 2743字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 聂臣巍 三峡大学计算机与信息学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (434)
参考文献  (14)
节点文献
引证文献  (3)
同被引文献  (14)
二级引证文献  (0)
1936(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(2)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小麦条锈病
气象因子
贝叶斯网络
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽农业科学
半月刊
0517-6611
34-1076/S
大16开
安徽省合肥市农科南路40号
26-20
1961
chi
出版文献量(篇)
78281
总下载数(次)
236
总被引数(次)
436536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导