原文服务方: 计算技术与自动化       
摘要:
以西安市城市居民出行方式为研究对象,收集西安市部分区域城市居民出行的调查数据。利用获得的调查数据,综合运用相关性分析方法和 K2算法进行贝叶斯网络的结构学习;应用贝叶斯参数估计方法进行贝叶斯网络的参数学习,建立了应用于西安城市居民出行方式分析的贝叶斯网络。应用所建网络分析了是否有私家车、居民性别、居民年龄和出行目的对西安城市居民出行方式的影响。研究结果表明,基于贝叶斯网络建立的西安城市居民出行方式分析模型预测精度较高,具有较高的实用价值。
推荐文章
基于贝叶斯网络的出行方式选择模型研究
出行方式
贝叶斯网络
参数估计
推理
基于贝叶斯网络的城市生态红线划定方法
生态红线
贝叶斯网络
空间优化
划定方法
基于贝叶斯网络的态势估计研究
态势估计
贝叶斯网络
节点概率
条件概率
基于贝叶斯网络的内部威胁预测研究
内部威胁
贝叶斯网络
网络攻击图
似然加权法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯网络的城市居民出行方式研究
来源期刊 计算技术与自动化 学科
关键词 交通需求管理 出行方式 贝叶斯网络 城市居民
年,卷(期) 2015,(3) 所属期刊栏目 【算法分析与研究】
研究方向 页码范围 73-77
页数 5页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 申健 长安大学教育技术与网络中心 7 40 3.0 6.0
2 王建锋 长安大学汽车学院 18 107 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (13)
参考文献  (5)
节点文献
引证文献  (11)
同被引文献  (10)
二级引证文献  (4)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(8)
  • 引证文献(6)
  • 二级引证文献(2)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通需求管理
出行方式
贝叶斯网络
城市居民
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
总被引数(次)
14675
论文1v1指导