基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
ET0是计算作物需水量、进行农田灌溉管理及区域水资源优化配置的重要依据。为了提高ET0的预测精度,将粒子群(particle swarm optimization,PSO)算法引入到ET0预测中,并用支持向量回归机(support vector machine,SVM)优化参数。PSO-SVM将最高气温、最低气温、相对湿度、平均风速与日照时数输入到SVM中学习,将SVM参数作为PSO中的粒子,把ET0值作为PSO的目标函数,然后通过粒子之间相互协作得到SVM最优参数,对ET0进行预测,并采用PM模型计算值验证。该文以新疆喀什地区为例,通过采用粒子群耦合支持向量机(PSO-SVM)算法训练得到模型,并用10组数据进行预测;最后引用BP神经网络算法和PSO-SVM 算法进行了对比,其结果表明, PSO-SVM算法预测准确率较高,预测值与实测值间相关系数达0.682,平均相对误差为3.19%。
推荐文章
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
基于粒子群算法优化支持向量机的模拟电路诊断
故障诊断
模拟电路
粒子群优化
多小波变换
支持向量机
粒子群优化的隐空间光滑支持向量机算法
隐空间
支持向量机
熵函数
粒子群优化
共轭梯度法
基于粒子群算法优化支持向量回归的水质预测模型
水质监测
支持向量回归机
非线性惯性权重
粒子群优化算法
组合模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机优化粒子群算法的作物生育期ET0预测
来源期刊 现代农业科技 学科 农学
关键词 ET0 PSO-SVM BP 干旱区
年,卷(期) 2014,(2) 所属期刊栏目 农业工程学 -- 工程研究
研究方向 页码范围 219-220,228
页数 3页 分类号 S2
字数 4259字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘玉甫 14 66 4.0 8.0
2 曹伟 36 192 7.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (142)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(12)
  • 参考文献(0)
  • 二级参考文献(12)
2005(12)
  • 参考文献(1)
  • 二级参考文献(11)
2006(14)
  • 参考文献(2)
  • 二级参考文献(12)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(9)
  • 参考文献(2)
  • 二级参考文献(7)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ET0
PSO-SVM
BP
干旱区
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代农业科技
半月刊
1007-5739
34-1278/S
大16开
安徽省合肥市
26-41
1972
chi
出版文献量(篇)
76497
总下载数(次)
131
总被引数(次)
166516
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导