基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.
推荐文章
基于 EPICS 的 J-TEXT CODAC系统
CODAC系统
托卡马克
ITER
EPICS
J-TEXT托卡马克数据采集系统设计
J-TEXT
数据采集
MDSplus
基于改进Tri-training算法的中文问句分类
Tri-training算法
随机采样
问句分类
基于辅助学习与富信息策略的Tri-training算法
半监督学习
富信息策略
辅助学习策略
Tri-training
说话声识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Classifying Unstructured Text Using Structured Training Instances and an Ensemble of Classifiers
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 ENSEMBLE Classification DIVERSITY TRAINING Data
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 58-73
页数 16页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ENSEMBLE
Classification
DIVERSITY
TRAINING
Data
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导