基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对协同过滤算法忽视供应商偏好、存在稀疏矩阵导致准确率低的现象,提出一种改进的协同过滤算法。利用改进的相似度计算方法填充评分矩阵,计算目标用户的评分,将目标用户评分作为 G-S 算法的输入项,得到消费者、供应商的匹配结果。仿真结果表明,算法具有较高的满意度和准确率。
推荐文章
协同过滤算法的研究
推荐系统
协同过滤
基于用户的算法
基于物品的算法
G-S模型下的双边推荐算法
推荐算法
满意值
Pareto最优
G-S算法
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于GPU的并行协同过滤算法
协同过滤
图形处理器
统一计算设备框架
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 G-S 模型下的协同过滤算法
来源期刊 桂林电子科技大学学报 学科 工学
关键词 协同过滤算法 满意值 Pareto最优 信息熵
年,卷(期) 2015,(5) 所属期刊栏目
研究方向 页码范围 395-400
页数 6页 分类号 TP391
字数 4646字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘建明 桂林电子科技大学计算机科学与工程学院 61 152 7.0 8.0
2 顾凯 桂林电子科技大学电子工程与自动化学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (542)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤算法
满意值
Pareto最优
信息熵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
桂林电子科技大学学报
双月刊
1673-808X
45-1351/TN
大16开
广西桂林市金鸡路1号
1981
chi
出版文献量(篇)
2598
总下载数(次)
1
总被引数(次)
11679
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导