基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Data mining is the powerful technique, which can be widely used for discovering the customers’ behaviors as well as customer’s preferences. As a result, it has been widely used in top level companies for evaluating their Customer Relationship Management (CRM) system today. In this study, a new K-means clustering method proposed to evaluate the cluster customers’ profitability in telecommunication industry in Sri Lanka. Furthermore, RFM model mainly used as an input variable for K-means clustering and distortion curve used to identify optimal number of initial clusters. Based on the results, telecommunication customers’ profitability in Sri Lanka mainly categorized into three levels.
推荐文章
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于变异的k-means聚类算法
聚类
mk-means算法
变异
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Mining Profitability of Telecommunication Customers Using K-Means Clustering
来源期刊 数据分析和信息处理(英文) 学科 经济
关键词 K-MEANS Clustering Data MINING RFM Model CUSTOMER Relationship Management
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 63-71
页数 9页 分类号 F2
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-MEANS
Clustering
Data
MINING
RFM
Model
CUSTOMER
Relationship
Management
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导