基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Multi-way join is critical for many big data applications such as data mining and knowledge discovery. Even though lots of research have been devoted to processing multi-way joins using MapReduce, there are still several problems in general to be further improved, such as transferring numerous unpromising intermediate data and lacking of better coordination mechanisms. This work proposes an efficient multi-way joins processing model using MapReduce, named Sharing-Coordination-MapReduce (SC-MapReduce), which has the functions of sharing and coordination. Our SC-MapReduce model can filter the unpromising intermediatedata largely by using the sharing mechanism and optimize the multiple tasks coordination of multi-way joins. Extensive experiments show that the proposed model is efficient, robust and scalable.
推荐文章
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
基于认知视角研究英语‘Way’构式语义生成机制
英语‘Way’构式
构式语法
转喻压制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Efficient Processing of Multi-way Joins Using MapReduce
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 MAPREDUCE multi-way joins SHARING and COORDINATION
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 23-24
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MAPREDUCE
multi-way
joins
SHARING
and
COORDINATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导