基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于隐含Markov模型(hidden Markov model,HMM)的无切分文本行识别方法能够利用概率图的思想,同步完成文本行图像的切分与识别,避免因字符预切分失败而导致的识别错误,但对字符模型的设计与训练要求很高,并且在多字体融合问题中难以提高模型泛化性能.该文通过分析模型状态在图像层面的聚类意义,先提出基于观测合理聚类的模型结构优化方法,再提出结构与参数相结合的字符模型优化策略,最后将其应用于多字体维吾尔文文本行的无切分识别系统.实验结果表明,该方法能够改善模型的状态分配合理性,并且在多字体融合问题中提高了模型泛化性能和状态利用效率.
推荐文章
基于字符类别的识别反馈混排字符切分方法
字符切分
分类器设计
字符类别判断
字符识别
脱机手写女书字符图像多方向文本行提取
女书
多方向文本行
脱机手写
最小外接矩形
Delaunay三角剖分
链接模型
基于N元模型的维吾尔文文本分类技术研究
N元
文本分类
维吾尔文
N元词典
相似度
曼哈顿距离
骰子测量
基于识别反馈的粘连字符切分方法研究
OCR
字符切分
粘连字符
字符识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 针对无切分维吾尔文文本行识别的字符模型优化
来源期刊 清华大学学报(自然科学版) 学科 工学
关键词 信息处理 文字识别 隐含Markov模型 统计学习 维吾尔文
年,卷(期) 2015,(8) 所属期刊栏目 电子工程
研究方向 页码范围 873-877,883
页数 6页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁晓青 86 2062 24.0 44.0
2 彭良瑞 6 56 3.0 6.0
3 姜志威 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (27)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(2)
  • 参考文献(1)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
信息处理
文字识别
隐含Markov模型
统计学习
维吾尔文
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报(自然科学版)
月刊
1000-0054
11-2223/N
大16开
北京市海淀区清华园清华大学
2-90
1915
chi
出版文献量(篇)
7846
总下载数(次)
26
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导