原文服务方: 计算机应用研究       
摘要:
针对传统卷积神经网络(CNN)缺乏句子体系特征的表示,以及传统双向门限循环神经网络(BiGRU)缺乏提取深层次特征能力.以中文文本为研究对象,在字符级词向量的基础上提出双通道的CNN-BiGRU复合网络,同时引入注意力机制的模型进行情感分析.首先,在单通道上利用CNN提取深层次短语特征,利用BiGRU提取全局特征的能力深度学习短语体系特征,从而得到句子体系的特征表示;再通过增加注意力层进行有效特征筛选;最后,采用双通道结构的复合网络,丰富了特征信息,加强了模型的特征学习能力.在数据集上进行多组对比实验,该方法取得了92.73%的F1值结果,优于对照组,说明提出的模型能有效地提高文本分类的准确率.同时在单句测试上量化出模型优势,且实现了模型的实际应用能力.
推荐文章
基于字符级联合网络特征融合的中文文本情感分析
卷积神经网络
BiGRU
注意力机制
中文文本情感分析
中文文本情感分析研究综述
信息处理
中文文本
情感分析
信息抽取
情感识别
一种基于情感词典和朴素贝叶斯的中文文本情感分类方法
文本情感分类
朴素贝叶斯
情感词典
基于神经网络的中文文本分类中的特征选择技术
文本分类
神经网络
主成分分析
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于字符级双通道复合网络的中文文本情感分析
来源期刊 计算机应用研究 学科
关键词 卷积神经网络 双向门限循环神经网络 注意力机制 中文文本情感分析
年,卷(期) 2020,(9) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2674-2678
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.04.0121
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵彤洲 35 113 6.0 9.0
2 蔡敦波 27 83 5.0 8.0
3 刘昌辉 15 40 4.0 5.0
4 王丽亚 5 4 2.0 2.0
5 王梦 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (90)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(7)
  • 参考文献(3)
  • 二级参考文献(4)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
双向门限循环神经网络
注意力机制
中文文本情感分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导