原文服务方: 微电子学与计算机       
摘要:
随着深度学习的发展,自然场景的文本检测取得了进步,但多方向和弯曲中文文本检测效果仍不理想.针对多方向和弯曲中文文本的检测问题,提出一种融合注意力机制的多尺度文本检测方法.为了平衡模型准确性和降低计算复杂度,采用轻量级Resnet18为主干网络.针对特征金字塔(FPN)提取的特征分布不确定性的问题,嵌入平衡注意力机制(BAM)提取有效文本特征并抑制低效特征通道,进而提升检测方法的鲁棒性.针对空洞空间金字塔池化网络(ASPP)下采样时图像局部信息和细节信息丢失的问题,改进ASPP以降低特征图分辨率的损失.针对FPN提取特征不足以及感受野小的问题,将嵌入注意力机制的FPN和改进的ASPP并行增强特征提取融合.针对正负样本的不平衡性的问题,基于可微二值化模块在二值图损失中引入对数化的AC Loss,从而增强检测模型的泛化能力.在公开数据集MSRA-TD500上的实验结果表明,该算法与目前快速高效的DBnet相比,准确率、召回率和F值分别提升0.1%、1.4%和0.6%,并且该算法的检测速率也有较好表现。
推荐文章
自然场景图像中的中文文本提取
ISODATA聚类
支持向量机
连通域分析
中心聚合
文本提取
多方向自然场景文本检测
自然场景文本检测
颜色增强的最大稳定极值区域
特征提取
多方向估计
分类器
自然场景下中文文本定位关键技术的研究
自然场景
MSER算法
结构特征
笔画宽度变换
中文文本定位
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向自然场景的中文文本检测
来源期刊 微电子学与计算机 学科 工学
关键词 文本检测 特征金字塔 BAM注意力机制 可微二值化 AC Loss
年,卷(期) 2022,(3) 所属期刊栏目 人工智能与算法
研究方向 页码范围 25-33
页数 8页 分类号 TP391.4
字数 语种 中文
DOI 10.19304/J.ISSN1000-7180.2021.0897
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本检测
特征金字塔
BAM注意力机制
可微二值化
AC Loss
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导