基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Due to its importance, influence spread maximization problem for social network has been solved by a number of algorithms. However, when it comes to the scalabilities, existing algorithms are not efficient enough to cope with real-world social networks, which are often big networks. To handle big social networks, we propose parallelized influence spread algorithms. Using Map-Reduce in Hadoop as the platform, we proposed Parallel DAGIS algorithm, a parallel influence spread maximization algorithm. Considering information loss in Parallel DAGIS algorithm, we also develop a Parallel Sampling algorithm and change DFS to BFS during search process. Considering two or even more hops neighbor nodes, we further improve accuracy of DHH. Experimental results show that efficiency has been improved, when coping with big social network, by using Parallel DAGIS algorithm and Parallel Sampling algorithm. The accuracy of DHH has been improved by taking into account more than two hops neighbors.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Maximal Influence Spread for Social Network Based on MapReduce
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 SOCIAL Network MAP-REDUCE INFLUENCE SPREAD
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 38-39
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SOCIAL
Network
MAP-REDUCE
INFLUENCE
SPREAD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导