基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies.
推荐文章
免疫捕捉real-time PCR对蚜虫中CMV检测体系的建立与应用
免疫捕捉real-time PCR
黄瓜花叶病毒(CMV)
蚜虫
Real-time PCR方法检测肉品中的沙门氏菌
沙门氏菌
Real-time PCR
快速检测
肉品
Real-time PCR、焦磷酸测序及基因芯片快速检测ALDH2?2基因多态性
ALDH2
多态性
焦磷酸测序
Real-time PCR
基因芯片
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Big Data Stream Analytics for Near Real-Time Sentiment Analysis
来源期刊 电脑和通信(英文) 学科 医学
关键词 BIG DATA DATA STREAM ANALYTICS SENTIMENT Analysis ONLINE Review
年,卷(期) 2015,(5) 所属期刊栏目
研究方向 页码范围 189-195
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BIG
DATA
DATA
STREAM
ANALYTICS
SENTIMENT
Analysis
ONLINE
Review
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导