基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高推荐系统在数据稀疏情况下的推荐质量,提出一种基于用户特征迁移的协同过滤推荐模型.利用矩阵分解技术提取辅助领域的用户特征,通过建立正则项约束的矩阵分解模型,将辅助领域的用户特征迁移到目标领域中,协助目标领域用户特征的学习,最终生成目标领域的用户推荐.设计快速收敛的Wiberg算法得到模型的最优解,并对实际应用中的可行性进行分析.通过对2个公开数据集的实验结果表明,该模型能够实现辅助领域用户特征的迁移,有效提高目标领域的推荐质量.
推荐文章
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于用户兴趣度和特征的优化协同过滤推荐
用户兴趣度
用户特征
贝叶斯算法
协同过滤
用户相似度
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于用户特征迁移的协同过滤推荐
来源期刊 计算机工程 学科 工学
关键词 数据稀疏 用户特征迁移 协同过滤 矩阵分解 Wiberg算法
年,卷(期) 2015,(1) 所属期刊栏目 先进计算与数据处理
研究方向 页码范围 37-43
页数 7页 分类号 TP311
字数 7254字 语种 中文
DOI 10.3969/j.issn.1000-3428.2015.01.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王靖 华侨大学计算机科学与技术学院 24 165 7.0 12.0
2 柯良文 华侨大学计算机科学与技术学院 2 23 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (528)
参考文献  (8)
节点文献
引证文献  (20)
同被引文献  (35)
二级引证文献  (32)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(8)
  • 参考文献(4)
  • 二级参考文献(4)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(10)
  • 引证文献(8)
  • 二级引证文献(2)
2017(10)
  • 引证文献(5)
  • 二级引证文献(5)
2018(13)
  • 引证文献(2)
  • 二级引证文献(11)
2019(14)
  • 引证文献(2)
  • 二级引证文献(12)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
数据稀疏
用户特征迁移
协同过滤
矩阵分解
Wiberg算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导