原文服务方: 河北省科学院学报       
摘要:
时间序列聚类是时间序列数据挖掘中重要的研究内容之一。由于时间序列的维数比较大,直接对时间序列原始数据进行聚类性能不理想,如何有效的对时间序列进行维数约简,并且保持原数据集本质特征,是本论文的主要研究点。首先使用局部线性嵌入(LLE)对时间序列样本维数约简,在低维空间对维数约简后的数据进行聚类,然后将它的聚类性能与已有方法如主成分分析(PCA)、分段聚合近似(PAA)进行比较。实验表明,使用 LLE更能提高聚类性能。
推荐文章
一种新的非线性时间序列的聚类方法
非线性时间序列
聚类
KS检验
基于局部线性聚类算法的模糊建模
T-S模糊模型
聚类算法
模糊神经网络
模糊规则
一种基于Normal矩阵的时间序列聚类方法
时间序列聚类
社团结构
复杂网络
Normal矩阵
相似度
基于趋势的时间序列相似性度量和聚类研究
时间序列
不确定性
相似性度量
聚类
趋势符号
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部线性嵌入的时间序列聚类
来源期刊 河北省科学院学报 学科
关键词 时间序列聚类 维数约简 主成分分析 分段聚合近似 局部线性嵌入
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 16-21
页数 6页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 翁小清 河北经贸大学信息技术学院 13 90 4.0 9.0
2 刘学 河北经贸大学信息技术学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (99)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时间序列聚类
维数约简
主成分分析
分段聚合近似
局部线性嵌入
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北省科学院学报
季刊
1001-9383
13-1081/N
大16开
1984-01-01
chi
出版文献量(篇)
1648
总下载数(次)
0
论文1v1指导