基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has applications in image processing, text mining, recommendation systems and a variety of other fields. Since its inception, the NMF algorithm has been modified and explored by numerous authors. One such modification involves the addition of auxiliary constraints to the objective function of the factorization. The purpose of these auxiliary constraints is to impose task-specific penalties or restrictions on the objective function. Though many auxiliary constraints have been studied, none have made use of data-dependent penalties. In this paper, we propose Zellner nonnegative matrix factorization (ZNMF), which uses data-dependent auxiliary constraints. We assess the facial recognition performance of the ZNMF algorithm and several other well-known constrained NMF algorithms using the Cambridge ORL database.
推荐文章
基于Reed-Solomon算法的Data Matrix条码纠错码的研究
Data Matrix码
伽罗华域
Reed-Solomon算法
纠错码
Data Matrix码识别技术研究
二维条码
条码识别
数据矩阵码
AHB Matrix 互连总线 IP的设计与实现
AHB
AHB Matrix
AHB-Lite
互连总线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Nonnegative Matrix Factorization with Zellner Penalty
来源期刊 统计学期刊(英文) 学科 工学
关键词 NONNEGATIVE Matrix FACTORIZATION Zellner g-Prior AUXILIARY Constraints REGULARIZATION PENALTY Classification Image Processing Feature Extraction
年,卷(期) 2015,(7) 所属期刊栏目
研究方向 页码范围 777-786
页数 10页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NONNEGATIVE
Matrix
FACTORIZATION
Zellner
g-Prior
AUXILIARY
Constraints
REGULARIZATION
PENALTY
Classification
Image
Processing
Feature
Extraction
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导