基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we study the impact of copying data in GPU computing. GPU computing allows implementing parallel computations at low cost: a GPU can be purchased at under USD 500. Many studies have shown that GPU can be used to speed up the calculations. But for algorithms requiring doing a part of the calculations on GPU and another part on CPU, alternately, latency due to the copy of the data is a performance degradation factor. To illustrate this, we consider the Dijkstra’s algorithm on the shortest path used in solving optimization problems. This algorithm is very heavy to run on sequential machine. So, we are considering a parallel approach on GPU. Note that Dijkstra’s algorithm has been subject of many implementations on GPU. In the present work, we use two platforms with external GPU. Graphs are represented in adjacency matrix. During the computation of this algorithm, intermediates results are copied from GPU to CPU or from CPU to GPU. The purpose of this work is to measure the impact of these copies in the overall performance of the algorithm. For that we calculate time due to the copying data’s implementation;then we compare results with implementation computing only on CPU memory (zero-copy). The real impact shown by experiments demonstrates the interest of this study. GP-GPU programmers have to think that they will use either memory zero-copy or GPU memory. The challenge for GPU’s manufacturers is how to reduce this impact.
推荐文章
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Concentration-discharge patterns of weathering products from global rivers
Concentration-discharge
Rivers
Silicate weathering
Solutes
Global Mapper系统在海洋调查中的应用
Global Mapper
海洋调查
地形
信息
利用GPU加速的三维N-S方程求解器研究
Navier-Stokes方程
GPU
DP-LUR
可压缩流动
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improving Global Performance on GPU for Algorithms with Main Loop Containing a Reduction Operation: Case of Dijkstra’s Algorithm
来源期刊 电脑和通信(英文) 学科 医学
关键词 GP-GPU Parallel COMPUTING CUDA C DIJKSTRA BGL GRID
年,卷(期) 2015,(8) 所属期刊栏目
研究方向 页码范围 41-54
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GP-GPU
Parallel
COMPUTING
CUDA
C
DIJKSTRA
BGL
GRID
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导