实验室中的电子设备和化学试剂等对温度条件的要求较高,需要进行智能温度控制。传统的实验室温度控制方法采用 BP 神经网络控制方法,系统连接权值表现为一种静态属性相关权重,难以适应实验室温度自适应控制的需求。提出一种基于变结构 BP 神经网络自适应校正的实验室智能温度控制算法。进行实验室温度数据的挖掘和预处理,构建变结构 BP 神经网络自校正控制模型,采用自适应校正方法对温差进行调整,采用比例元进行温度过高情况下的微调,采用积分元进行温度过低下的微调,实现控制算法改进。基于 TMS320VC5509A DSP 芯片进行智能温控系统的核心电路设计。仿真结果表明,采用该系统能有效实现实验室温度智能控制,性能较好,可靠性高。