基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
神经网络与遗传算法相结合在锅炉燃烧优化问题上的应用非常广泛,但是传统的反向传播(BP,Back Propagation)神经网络泛化能力较弱,而贝叶斯正则化方法能有效提高神经网络的泛化能力.应用贝叶斯正则化BP神经网络与遗传算法相结合的方法,对锅炉燃烧多目标优化问题进行研究.通过利用锅炉热态实验数据进行仿真,结果表明:贝叶斯神经网络模型可以很好地预测锅炉的热效率和NOx浓度,结合遗传算法可以对锅炉燃烧实现有效的多目标寻优,为电站的经济环保运行提供理论指导.
推荐文章
基于神经网络遗传算法的锅炉燃烧优化系统
锅炉
神经网络
遗传算法
Matlab
基于神经网络与遗传算法的锅炉系统的优化
预测
优化
循环流化床锅炉
Matlab
C#
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
基于贝叶斯正则化算法BP神经网络钒电池SOC预测
钒电池
荷电状态
BP神经网络
贝叶斯正则化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯神经网络遗传算法的锅炉燃烧优化
来源期刊 系统仿真学报 学科 工学
关键词 锅炉 燃烧优化 贝叶斯正则化 神经网络 遗传算法 多目标优化
年,卷(期) 2015,(8) 所属期刊栏目 人工智能与仿真
研究方向 页码范围 1790-1795
页数 分类号 TP183|TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李宁 111 547 11.0 21.0
2 方海泉 3 26 2.0 3.0
3 薛惠锋 3 26 2.0 3.0
4 费晰 1 21 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (63)
参考文献  (11)
节点文献
引证文献  (21)
同被引文献  (63)
二级引证文献  (14)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(9)
  • 参考文献(2)
  • 二级参考文献(7)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(6)
  • 参考文献(6)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(6)
  • 引证文献(4)
  • 二级引证文献(2)
2018(9)
  • 引证文献(4)
  • 二级引证文献(5)
2019(15)
  • 引证文献(9)
  • 二级引证文献(6)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
锅炉
燃烧优化
贝叶斯正则化
神经网络
遗传算法
多目标优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统仿真学报
月刊
1004-731X
11-3092/V
大16开
北京市海淀区永定路50号院
82-9
1989
chi
出版文献量(篇)
14694
总下载数(次)
35
总被引数(次)
173926
论文1v1指导