基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With cameras becoming ubiquitous in Smartphones, it has become a very common trend to capture and share moments with friends and family in social media. Arguably, the 2 most relevant factors that contribute to the popularity are: the user’s social aspect and the content of the image (image quality, objects in the image etc.). In recent years, due to various security concerns, it has been increasingly difficult to derive social attributes from social media. Due to this limitation, in this paper we study what make images popular in social media based on the image content alone. We use Bayesian learning approach with variable likelihood function in order to predict image popularity. Our finding shows that a mapping between image content to image popularity can be achieved with a significant recall and precision. We then use our model to predict images that are likely to be more popular from a set of user images which eventually facilitate easy share.
推荐文章
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
Real与Media流媒体技术比较
Real
Media
流媒体
比较
Geo Media到Arc GIS的数据转换方法
Geo Media
Arc GIS
数据格式转换
坐标变换
数据处理
英国Virgin Media试验“世界最快”有线宽带
Media
有线宽带
英国
世界
试验
电视公司
宽带速度
有线连接
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Bayesian Approach to Identify Photos Likely to Be More Popular in Social Media
来源期刊 电脑和通信(英文) 学科 医学
关键词 BAYESIAN Supervised Learning Image POPULARITY Classification Data Mining
年,卷(期) 2015,(11) 所属期刊栏目
研究方向 页码范围 198-204
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BAYESIAN
Supervised
Learning
Image
POPULARITY
Classification
Data
Mining
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导