基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了多类别样本数据集的分类,针对传统的“一对一”或“一对多”BP-Ada-Boost算法,训练时间开销随着训练样本数以及训练样本种类的增加急剧增加,使其实际应用十分受限,尤其不适用于大规模数据分类的问题,提出了将多分类BP神经网络与使用多类分类指数损失函数的逐步叠加建模(SAMME)算法相结合以构造AdaBoost强发类的Multi-BP AdaBoost算法,实现模型信息的有效利用与融合增强.对传统“一对多”BP-AdaBoost算法和Multi-BP AdaBoost算法进行了对比试验,结果表明,在相同测试情况下,后者有效降低了BP-AdaBoost训练过程中的时间开销.
推荐文章
一种改进的BP-AdaBoost算法及应用研究
神经网络
BP-AdaBoost算法
思维进化算法
多分类
上证指数预测
强预测器
基于BP-Adaboost算法的棉花采摘机预维修方法研究
棉花采摘机
预测维修
BP-Adaboost算法
一种改进的BP-AdaBoost算法及应用研究
神经网络
BP-AdaBoost算法
思维进化算法
多分类
上证指数预测
强预测器
BP-AdaBoost分类算法的MapReduce并行化实现
云计算
BP-AdaBoost
MapReduce
海量数据
Hadoop集群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多分类BP-AdaBoost算法研究与应用
来源期刊 高技术通讯 学科
关键词 AdaBoost BP神经网络 二分类 多分类
年,卷(期) 2015,(5) 所属期刊栏目 计算机与通信技术
研究方向 页码范围 437-444
页数 8页 分类号
字数 4348字 语种 中文
DOI 10.3772/j.issn.1002-0470.2015.05.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张凯 中国科学院信息工程研究所 105 1451 21.0 34.0
2 吕雁飞 2 10 2.0 2.0
3 侯子骄 中国科学院信息工程研究所 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (3)
参考文献  (11)
节点文献
引证文献  (8)
同被引文献  (21)
二级引证文献  (6)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(8)
  • 引证文献(5)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
AdaBoost
BP神经网络
二分类
多分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高技术通讯
月刊
1002-0470
11-2770/N
大16开
北京市三里河路54号
82-516
1991
chi
出版文献量(篇)
5099
总下载数(次)
14
总被引数(次)
39217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导