基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
如何在人群密度大、变化快、存在大量遮挡的密集场景中实现可靠的人群事件检测,是领域研究的难点和热点.在密集场景时空建模的基础上提出了一种基于多尺度时间递归神经网络的人群异常事件检测和定位方法.首先对人群场景进行网格化划分,并利用多尺度光流直方图对每个网格的人群动态进行刻画;然后,连接各个局部的人群动态获得整体的人群动态,实现整体人群动态的时间序列建模;最后,利用多尺度时间递归神经网络实现异常事件的检测和定位.其中,多尺度隐含层实现了密集场景中不同规模相邻网格之间的空间联系,节点间的反馈关系则为时间维度上的关系表达提供了有效方案与多种代表性算法的对比实验,验证了本方法的有效性.
推荐文章
基于递归神经网络局部建模的人群异常事件监测
人群异常监测
异常定位
递归神经网络
无监督学习
重构误差
基于深度时空卷积神经网络的人群异常行为检测和定位
人群异常行为检测
深度时空卷积神经网络
迁移学习
数据扩充
基于递归神经网络局部建模的人群异常事件监测
人群异常监测
异常定位
递归神经网络
无监督学习
重构误差
编码-解码多尺度卷积神经网络人群计数方法
人群计数
编码-解码结构
多尺度
空洞空间金字塔池化
计数误差
损失函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度时间递归神经网络的人群异常检测
来源期刊 软件学报 学科 工学
关键词 视频监控 人群异常事件检测 时间递归神经网络 多尺度
年,卷(期) 2015,(11) 所属期刊栏目 大数据时代的机器学习研究专刊
研究方向 页码范围 2884-2896
页数 13页 分类号 TP183
字数 8219字 语种 中文
DOI 10.13328/j.cnki.jos.004893
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郝志峰 广东工业大学计算机学院 166 940 14.0 20.0
2 温雯 广东工业大学计算机学院 48 272 10.0 14.0
3 王丽娟 广东工业大学计算机学院 20 92 5.0 9.0
4 谢伟浩 广东工业大学计算机学院 2 38 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (38)
同被引文献  (91)
二级引证文献  (38)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(5)
  • 参考文献(5)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(14)
  • 引证文献(14)
  • 二级引证文献(0)
2018(23)
  • 引证文献(11)
  • 二级引证文献(12)
2019(24)
  • 引证文献(6)
  • 二级引证文献(18)
2020(12)
  • 引证文献(4)
  • 二级引证文献(8)
研究主题发展历程
节点文献
视频监控
人群异常事件检测
时间递归神经网络
多尺度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导