基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
协同过滤推荐算法分为基于内存和基于模型的推荐算法,协同过滤推荐算法存在数据稀疏性、可扩展性、冷启动等问题。通过基于用户、基于项目协同过滤推荐算法以及SVD、Slope-One、KNN等基于模型协同过滤推荐算法对比分析。提出加入特征向量维度优化的SVD算法,通过降维改善数据稀疏性问题。利用Hadoop分布式平台改善推荐算法可扩展性问题。基于MovieLens数据集实验结果表明,引入基于Boolean相似性计算方法的推荐效果更优,引入数量权重和标准差权重的优化 Slope-One 算法和引入特征向量维度的优化 SVD 算法推荐效果更优。
推荐文章
基于组合优化理论的协同过滤推荐算法
局部
组合优化理论
协同过滤
推荐算法
稀疏问题
评分精度
协同过滤算法优化在推荐系统中的应用
电子商务
推荐系统
协同过滤
情感性需求
基于标签优化的协同过滤推荐算法
标签
拓展近邻
协同过滤
基于密度的动态协同过滤图书推荐算法
协同过滤
个性化推荐
动态
相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 协同过滤推荐算法对比分析与优化应用
来源期刊 计算机系统应用 学科
关键词 协同过滤 相似性 Hadoop Slope-One SVD
年,卷(期) 2015,(5) 所属期刊栏目 软件技术?算法
研究方向 页码范围 100-105
页数 6页 分类号
字数 4571字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林世平 福州大学数学与计算机科学学院 34 380 8.0 19.0
2 郭昆 福州大学数学与计算机科学学院 37 180 8.0 11.0
3 张学钱 福州大学数学与计算机科学学院 1 18 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (676)
参考文献  (7)
节点文献
引证文献  (18)
同被引文献  (76)
二级引证文献  (24)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(4)
  • 引证文献(3)
  • 二级引证文献(1)
2018(17)
  • 引证文献(9)
  • 二级引证文献(8)
2019(12)
  • 引证文献(2)
  • 二级引证文献(10)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
协同过滤
相似性
Hadoop
Slope-One
SVD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导