基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
双支持向量机是一种新的非平行二分类算法,其处理速度比传统支持向量机快很多,但是双支持向量机在训练之前要进行大量的复杂逆矩阵计算;在非线性情况下,它不能像传统支持向量机那样把核技巧直接运用到对偶优化问题中;并且双支持向量机没有考虑不同输入样本点会对最优分类超平面产生不同的影响。针对这些情况,提出了一种模糊简约双支持向量机。该模糊简约双支持向量机通过对二次规划函数和拉格朗日函数的改进,省略大量的逆矩阵计算,同时核技巧能直接运用到非线性分类情况下;对于混合模糊隶属度函数,不仅每个样本点到类中心的距离影响着该混合模糊隶属度,而且该样本点的邻域密度同样影响着该混合模糊隶属度。实验结果表明,与支持向量机、标准双支持向量机、双边界支持向量机、模糊双支持向量机相比,具有该混合模糊隶属度函数的简约双支持向量机不仅分类时间短,计算简单,而且分类精度高。
推荐文章
基于混合模糊隶属度的模糊双支持向量机研究
模糊隶属度
支持向量机
双支持向量机
模式分类
具有模糊隶属度的模糊支持向量机算法
模糊支持向量机
模糊隶属度
故障诊断
基于混合模糊隶属度的模糊双支持向量机研究
模糊隶属度
支持向量机
双支持向量机
模式分类
基于可变隶属度的模糊双支持向量机研究
双支持向量机
支持向量机
等距点
等价性比例
模糊隶属度
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合隶属度的模糊简约双支持向量机研究
来源期刊 计算机工程与应用 学科 工学
关键词 双支持向量机 支持向量机 逆矩阵 核技巧 模糊隶属度 分类
年,卷(期) 2015,(10) 所属期刊栏目 理论研究、研发设计
研究方向 页码范围 36-41
页数 6页 分类号 TP311.5
字数 5700字 语种 中文
DOI 10.3778/j.issn.1002-8331.1405-0288
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 任建华 辽宁工程技术大学电子与信息工程学院 21 97 6.0 8.0
2 孟祥福 辽宁工程技术大学电子与信息工程学院 51 387 12.0 17.0
3 王伟 辽宁工程技术大学电子与信息工程学院 39 229 9.0 13.0
4 刘晓帅 辽宁工程技术大学电子与信息工程学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (87)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (23)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双支持向量机
支持向量机
逆矩阵
核技巧
模糊隶属度
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导