基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
生产线上大批量小型电机普遍通过训练有素的工人进行音质检测.针对电机声音信号的统计特性及其人工检测特点,采用小波包变换对电机的声信号进行分解,并提取其频带系数的奇异值作为特征,映射到特征矢量所张成的状态空间.考虑到生产线上异音样本量少、获取困难、个体差异造成异音等问题难以分析,引入支持向量机一类学习算法进行异音检测.通过对电机声信号的实测数据进行分析,充分利用小波包优良的时频局部化特性和支持向量机在小样本情况下出色的学习性能及全局最优能力,验证这种方法的有效性.
推荐文章
SVM和小波包变换在动作模式识别中的应用
表面肌电
小波包
模式识别
支持向量机
基于小波包分析和SVM的透平机振动故障诊断研究
小波包分析
透平机振动故障
EMD算法
SVM
基于小波包分解与机器学习的汽车调光电机异音识别
调光电机装置
异音识别
机器学习
支持向量机
小波包
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包和SVM一类学习在电机异音检测中的应用
来源期刊 测控技术 学科 工学
关键词 异音检测 小波包分解 奇异值 支持向量机 一类学习
年,卷(期) 2015,(2) 所属期刊栏目 数据采集与处理
研究方向 页码范围 35-38,43
页数 5页 分类号 TP181
字数 3134字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 温浩 五邑大学信息工程学院 15 41 4.0 5.0
2 刘力源 五邑大学信息工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (1874)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (17)
二级引证文献  (7)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(2)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
异音检测
小波包分解
奇异值
支持向量机
一类学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导