基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
协同过滤推荐算法是目前应用最为广泛的个性化推荐方法之一,但传统的推荐算法在计算目标用户邻居集时只考虑用户项目评分矩阵中的具体数值,没有考虑用户偏好以及用户评分与项目属性之间的关系,推荐精度也有待进一步提高。针对这一问题,提出了一种基于用户偏好和项目属性的协同过滤推荐算法(UPPPCF)。本算法在传统的用户项目评分矩阵基础上综合考虑用户偏好以及项目属性,把评分矩阵转变成基于用户偏好的用户项目属性评分矩阵,然后根据这一评分矩阵来计算目标用户的最近邻居集,克服了传统相似性计算方法只依靠用户评分值的不足,同时本文对预测值判定给出了一种有效的度量方法。在 MovieLen 数据集上的实验结果表明,本文提出的UPPPCF算法能够有效弥补传统协同过滤算法中的不足,而且在推荐精度上有了明显的提高。
推荐文章
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于项目属性与数据权重的协同过滤推荐算法
推荐系统
协同过滤
项目属性
相似性
数据权重
基于用户多属性与兴趣的协同过滤算法
协同过滤
冷启动
数据稀疏性
用户多属性
隐性标签
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于用户偏好和项目属性的协同过滤推荐算法
来源期刊 计算机系统应用 学科
关键词 协同过滤 推荐系统 用户偏好 用户项目属性评分矩阵
年,卷(期) 2015,(7) 所属期刊栏目
研究方向 页码范围 15-21
页数 7页 分类号
字数 8000字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邹东升 重庆大学计算机学院 9 113 5.0 9.0
2 牛宝君 重庆大学计算机学院 2 41 2.0 2.0
3 姚平平 重庆大学计算机学院 1 22 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (379)
参考文献  (11)
节点文献
引证文献  (22)
同被引文献  (29)
二级引证文献  (28)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(11)
  • 参考文献(0)
  • 二级参考文献(11)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(9)
  • 参考文献(5)
  • 二级参考文献(4)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(4)
  • 引证文献(4)
  • 二级引证文献(0)
2017(10)
  • 引证文献(9)
  • 二级引证文献(1)
2018(13)
  • 引证文献(6)
  • 二级引证文献(7)
2019(20)
  • 引证文献(2)
  • 二级引证文献(18)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
协同过滤
推荐系统
用户偏好
用户项目属性评分矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导