作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对用户评分数据稀疏性和项目最近邻寻找的不准确性问题,提出了一种项目子相似度融合的协同过滤推荐算法.该算法根据目标用户每一属性取值,选取与该属性值一致的用户作为用户子空间,并在此空间上计算目标项目与其他项目之间的相似度(称其为项目子相似度).在此基础上,以项目子相似度为依据选取目标项目的K最近邻,计算其预测评分;最后对用户不同属性上的预测评分进行加权求和,得到目标项目的最终评分.实验结果表明,该算法能准确地选取目标项目的最近邻,明显改善了推荐质量.
推荐文章
基于项目综合相似度的协同过滤算法
协同过滤
项目相似度
类别相似度
综合相似度
发射率
结合项目流行度加权的协同过滤推荐算法
协同过滤
相似性度量
流行度偏差
项目流行度
融合正态分布函数相似度的协同过滤算法
相似度量
正态分布函数
协同过滤
邻近用户集合
融合协同过滤的XGBoost推荐算法
协同过滤
冷启动
XGBoost
推荐系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 项目子相似度融合的协同过滤推荐算法
来源期刊 计算机系统应用 学科
关键词 协同过滤 项目子相似度 用户属性权值
年,卷(期) 2015,(1) 所属期刊栏目 软件技术·算法
研究方向 页码范围 147-150
页数 4页 分类号
字数 3321字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毕孝儒 四川外国语大学重庆南方翻译学院管理学院 34 35 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (484)
参考文献  (4)
节点文献
引证文献  (8)
同被引文献  (26)
二级引证文献  (17)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(10)
  • 引证文献(2)
  • 二级引证文献(8)
2018(9)
  • 引证文献(2)
  • 二级引证文献(7)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
协同过滤
项目子相似度
用户属性权值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导