基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对上海洋山深水港口的船舶流量的调研以及对船舶交通流量影响因素的分析,建立支持向量机预测模型.同时为了解决支持向量机预测模型的参数选择问题,引入了粒子群优化算法进行参数优化,建立较优的PSO-SVM预测模型.通过MATLAB仿真实验计算,将PSO-SVM模型与单纯的SVM预测模型和灰色神经网络预测模型结果进行对比分析,证明了该模型的可行性和优越性.
推荐文章
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于PSO滚动优化的LS-SVM预测控制
非线性模型预测控制
非线性建模
最小二乘支持向量机
粒子群算法
基于禁忌算法优化神经网络的海洋船舶流量预测
流量预测
禁忌算法
神经网络
海洋船舶
基于PSO优化RBF神经网络的溶解氧预测算法研究
渔业养殖
物联网
径向基函数神经网络
粒子群算法
溶解氧预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO优化SVM的船舶流量预测算法
来源期刊 微型机与应用 学科 工学
关键词 船舶流量 多因素 预测 灰色神经网络 支持向量机 粒子群优化算法
年,卷(期) 2015,(5) 所属期刊栏目 技术与方法
研究方向 页码范围 73-75
页数 3页 分类号 TP391.9
字数 2577字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄洪琼 上海海事大学信息工程学院 28 117 6.0 9.0
2 沈浩 上海海事大学信息工程学院 2 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (61)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (41)
二级引证文献  (6)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(8)
  • 参考文献(2)
  • 二级参考文献(6)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
船舶流量
多因素
预测
灰色神经网络
支持向量机
粒子群优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导