基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决复杂网络社区结构挖掘的优化问题,根据复杂网络拓扑结构的先验知识,提出一种基于离散粒子群优化的社区结构挖掘算法。将粒子的位置和速度定义在离散环境下,设计粒子的更新规则,在不需要事先指定社区个数的前提下自动判断网络的最佳社区个数,给出局部搜索算子,该算子可以帮助算法跳出局部最优解,提高算法的收敛速度和全局寻优能力。实验结果表明,与iMeme-net算法相比,该算法能够准确地挖掘出复杂网络中隐藏的社区结构,且执行速度较快。
推荐文章
采用离散粒子群算法的复杂网络重叠社团检测
复杂网络
社团检测
重叠社团
离散粒子群算法
一种基于粒子群优化的关联规则挖掘方法
关联规则挖掘
粒子群优化算法
支持度
置信度
最优规则
基于混合粒子群的RFID网络的优化部署
射频识别网络
混合粒子群算法
粒子群算法
遗传算法
部署
优化
基于GPU的复杂网络社区挖掘算法并行计算
社区结构挖掘
复杂网络
图形处理单元
CUDA
快速Newman
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化的复杂网络社区挖掘
来源期刊 计算机工程 学科 工学
关键词 粒子群优化 复杂网络 社区结构 社区挖掘 局部搜索 模块密度
年,卷(期) 2015,(3) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 177-181
页数 5页 分类号 TP18
字数 3435字 语种 中文
DOI 10.3969/j.issn.1000-3428.2015.03.034
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 白云 西北农林科技大学信息工程学院 5 7 1.0 2.0
2 任国霞 西北农林科技大学信息工程学院 8 38 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (11)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (8)
二级引证文献  (7)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子群优化
复杂网络
社区结构
社区挖掘
局部搜索
模块密度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导