原文服务方: 计算机应用研究       
摘要:
针对传统的数据流检测中存在的时间复杂度高、准确度低等问题,提出了一种基于滑动时间窗口和k-距离剪枝的信息熵异常检测算法.该算法引用滑动时间窗口将动态的数据流静态化,当数据流填满当前窗口后,在当前窗口中用k-距离剪枝方法对数据进行初步检测,从而剔除绝大部分的正常数据.最后再对筛选出疑似异常的数据用信息熵的检测方法进行检测,输出信息熵值大于设定阈值EA的数据点.通过实验验证,该算法比传统的检测算法在时间复杂度和准确度上都有一定的优越性.
推荐文章
一种基于随机空间树的数据流异常检测算法
数据流
异常检测
随机空间树
单窗口策略
AUC得分
运行时间
高维数据集之中基于距离的离群快速检测算法
数据挖掘
算法
离群
高维数据集
近似K-近邻
聚类
断路器数据在线异常点检测算法研究
断路器
在线异常点检测
滑动窗口
局部异常因子
滑动平均过滤
基于分化距离的离群点检测算法
离群点检测
分化距离
分化度
友邻点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于距离的数据流在线检测算法研究
来源期刊 计算机应用研究 学科
关键词 数据流 滑动窗口 k-距离 异常检测 信息熵
年,卷(期) 2015,(12) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3579-3581
页数 3页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2015.12.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李少波 贵州大学现代制造技术教育部重点实验室 163 758 13.0 21.0
3 孟伟 中国科学院成都计算机研究所 10 71 5.0 8.0
6 魏中贺 贵州大学计算机科学与技术学院 3 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (58)
参考文献  (12)
节点文献
引证文献  (7)
同被引文献  (24)
二级引证文献  (13)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(4)
  • 引证文献(3)
  • 二级引证文献(1)
2018(8)
  • 引证文献(2)
  • 二级引证文献(6)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
数据流
滑动窗口
k-距离
异常检测
信息熵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导