原文服务方: 现代电子技术       
摘要:
将蛋白质序列的ATP绑定位点与非绑定位点进行分类是个不平衡的二分类问题,其中绑定位点是样本数目稀少的正类样本,非绑定位点是样本数目众多的负类样本。根据机器学习关于可以将分类问题作为回归问题的特例的观点出发,并根据所研究问题本身的特点,在此提出一种基于随机下采样和支持向量回归的蛋白质?ATP绑定位点预测方法。首先,使用滑动窗口抽取蛋白质序列中每个残基的特征,得到一批不平衡的两类样本;其次,应用随机下采样策略,消除正负样本存在的显著不平衡;最后,使用支持向量回归建立预测模型,并选取合适的阈值进行蛋白质?ATP绑定位点的预测。在标准数据集上的实验结果以及与几种最新报道的预测方法的对比结果,验证了本文所述方法的有效性。
推荐文章
基于支持向量机集成的蛋白质与维生素绑定位点预测
蛋白质-维生素相互作用
绑定位点预测
多重随机下采样
SVM集成
Adaboost算法
序列蛋白质-GDP绑定位点预测
蛋白质-GDP绑定预测
位置特异性得分矩阵
稀疏表示
加权下采样
支持向量机
蛋白质亚细胞定位预测研究综述
蛋白质亚细胞定位预测
特征表示
算法设计
算法测试
Web服务器
基于聚类的下采样及其在蛋白质-核苷酸绑定位点预测中的应用磁
位置特异性得分矩阵
稀疏表示
基于聚类的下采样
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机下采样和SVR的蛋白质-ATP绑定位点预测
来源期刊 现代电子技术 学科
关键词 蛋白质-ATP绑定位点 位置特异性得分矩阵 滑动窗口 支持向量回归模型 随机下采样
年,卷(期) 2015,(4) 所属期刊栏目 计算机应用技术
研究方向 页码范围 19-24
页数 6页 分类号 TN911-34
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙廷凯 南京理工大学计算机科学与工程学院 9 76 4.0 8.0
2 余健浩 南京理工大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (22)
参考文献  (25)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(2)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(6)
  • 参考文献(6)
  • 二级参考文献(0)
2012(5)
  • 参考文献(5)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蛋白质-ATP绑定位点
位置特异性得分矩阵
滑动窗口
支持向量回归模型
随机下采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导