基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着微博的日趋流行与广泛使用,新浪等微博网站已经成为海量信息的来源,虽然传统的文本主题挖掘方法已经得到广泛的应用研究,但对于微博这种特殊结构的文本,传统的挖掘算法不能很好地对其进行研究。为了弥补目前微博平台主题挖掘方法的不足,以及考虑到微博信息的稀疏性,多维性等特点,提出有针对性的预处理方法,将用户微博数据与AT模型结合,通过吉布斯采样进行微博主题挖掘,对作者主题进一步提取得到用户兴趣。通过在真实数据集上的实验,以及与LDA模型对比,证明该模型能有效得到微博主题。
推荐文章
基于发文内容的微博用户兴趣挖掘方法研究
微博
发文内容
兴趣挖掘
主题短语模型
知识库
结合微博关注特性的UF_AT模型用户兴趣挖掘研究
微博
用户关注特性
作者主题模型
兴趣挖掘
基于文本聚类与兴趣衰减的微博用户兴趣挖掘方法
微博
single-pass聚类
LDA模型
用户兴趣挖掘
兴趣衰减
微博中结合转发特性的用户兴趣话题挖掘方法
微博
用户
兴趣转发
跟随转发
主题模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AT模型的微博用户兴趣挖掘研究
来源期刊 计算机工程与应用 学科 工学
关键词 微博 主题挖掘 AT模型 吉布斯采样
年,卷(期) 2015,(13) 所属期刊栏目 数据库、数据挖掘、机器学习
研究方向 页码范围 126-130,144
页数 6页 分类号 TP181
字数 5389字 语种 中文
DOI 10.3778/j.issn.1002-8331.1307-0086
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张旭 辽宁工程技术大学软件学院 42 255 7.0 14.0
2 王永贵 辽宁工程技术大学软件学院 47 293 10.0 15.0
3 刘宪国 辽宁工程技术大学软件学院 6 47 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (330)
参考文献  (12)
节点文献
引证文献  (10)
同被引文献  (7)
二级引证文献  (7)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(9)
  • 参考文献(1)
  • 二级参考文献(8)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(6)
  • 引证文献(5)
  • 二级引证文献(1)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
微博
主题挖掘
AT模型
吉布斯采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导