原文服务方: 计算机应用研究       
摘要:
结合用户兴趣与微博信息的特点,提出了一种文本聚类与兴趣衰减的微博用户兴趣挖掘(TCID-MUIM)方法.首先通过基于词林的同义词合并策略弥补建模时词频信息不足的弊端;然后利用二次single-pass不完全聚类算法将用户微博划分为多个簇,将簇合并为同一文档以弥补微博文本短小难以挖掘主题信息的问题;最后通过LDA模型建模,并考虑用户兴趣随时间变化的问题,引入时间因子,将微博—主题矩阵压缩为用户—主题矩阵,获取用户兴趣.实验表明,较之传统建模方法与合并用户历史微博为同一文档的建模方法,TCID-MUIM方法挖掘的用户兴趣主题具有更好的主题区分度,且更贴合用户的真实兴趣偏好.
推荐文章
基于发文内容的微博用户兴趣挖掘方法研究
微博
发文内容
兴趣挖掘
主题短语模型
知识库
基于用户扩展兴趣的微博推荐方法
个体兴趣
关联兴趣
扩展兴趣
微博推荐
微博中结合转发特性的用户兴趣话题挖掘方法
微博
用户
兴趣转发
跟随转发
主题模型
融合用户兴趣模型与会话抽取的微博推荐方法
用户兴趣模型
会话抽取
归一化割
非负矩阵分解
微博推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于文本聚类与兴趣衰减的微博用户兴趣挖掘方法
来源期刊 计算机应用研究 学科
关键词 微博 single-pass聚类 LDA模型 用户兴趣挖掘 兴趣衰减
年,卷(期) 2019,(5) 所属期刊栏目 系统应用开发
研究方向 页码范围 1469-1473
页数 5页 分类号 TP301.6|TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2017.11.0743
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦永彬 贵州大学计算机科学与技术学院 63 213 8.0 10.0
5 魏笑 贵州大学计算机科学与技术学院 2 6 1.0 2.0
6 孙玉洁 贵州大学计算机科学与技术学院 2 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (152)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (9)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微博
single-pass聚类
LDA模型
用户兴趣挖掘
兴趣衰减
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导