基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改善协同过滤推荐算法在大数据下的稀疏性和可扩展性问题,提出一种基于Hadoop平台的分布式改进聚类协同过滤推荐算法。在分布式平台下,离线对高维稀疏数据采用矩阵分解算法预处理,改善数据稀疏性后通过改进项目聚类算法构建聚类模型,根据聚类模型和相似性计算形成推荐候选空间,在线完成推荐。实验验证该算法能够有效改善推荐系统的推荐质量并大大提高推荐效率,同时在云环境中具有良好可扩展性。
推荐文章
基于 Mahout 分布式协同过滤推荐算法分析与实现
分布式协同过滤
Mahout
推荐系统
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于模糊聚类和改进混合蛙跳的协同过滤推荐
协同过滤推荐
指数遗忘函数
模糊C-均值聚类
混合蛙跳算法
结合改进用户聚类与 LFM 模型的协同过滤推荐算法
协同过滤推荐
AP聚类
隐语义模型
线性加权
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Hadoop分布式改进聚类协同过滤推荐算法研究
来源期刊 计算机工程与应用 学科 工学
关键词 协同过滤 Hadoop 矩阵分解 聚类 分布式计算
年,卷(期) 2015,(15) 所属期刊栏目 数据库、数据挖掘、机器学习
研究方向 页码范围 124-128
页数 5页 分类号 TP301.6
字数 4314字 语种 中文
DOI 10.3778/j.issn.1002-8331.1405-0415
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱庆生 重庆大学计算机学院 175 1952 22.0 33.0
2 孙天昊 重庆大学计算机学院 24 175 8.0 12.0
3 李明 重庆大学计算机学院 40 501 13.0 21.0
4 黎安能 重庆大学计算机学院 1 41 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (678)
参考文献  (6)
节点文献
引证文献  (41)
同被引文献  (110)
二级引证文献  (96)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(8)
  • 参考文献(0)
  • 二级参考文献(8)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(3)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(6)
  • 引证文献(6)
  • 二级引证文献(0)
2017(17)
  • 引证文献(11)
  • 二级引证文献(6)
2018(49)
  • 引证文献(13)
  • 二级引证文献(36)
2019(45)
  • 引证文献(9)
  • 二级引证文献(36)
2020(18)
  • 引证文献(0)
  • 二级引证文献(18)
研究主题发展历程
节点文献
协同过滤
Hadoop
矩阵分解
聚类
分布式计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导