基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在之前的研究中使用人工神经网络进行水质指标预测已经取得一定效果,在此基础上将交叉验证应用于人工神经网络的训练,获得更加准确的预测结果。以澧水某监测站的水质实测数据作为样本,选取总磷、总氮、溶解氧等6个指标,建立水质预测模型。在运用Levenberg-Marquardt优化算法对学习样本进行优化的基础上,采用加权的k-fold交叉验证方法来构建神经网络集合,构建集合时采取三种不同的混合方式:平均值、中间值和加权累积。针对不同的指标,进行了一系列的实验,总的来说,新的预测方法与简单0倍验证相比有更好的预测结果,在所有指标中氨氮和溶解氧含量预测准确率比其他指标高。
推荐文章
自适应遗传BP神经网络在水质预测中应用
遗传算法
BP神经网络
水质预测
量子神经网络在旋转机组状态趋势预测中的应用
旋转机组
量子神经网络
量子计算
故障特征量
趋势预测
基于均值函数新息加权的神经网络趋势预测的方法研究
旋转机组
趋势预测
均值函数
新息加权的神经网络
旋转机械的新息加权神经网络工作状态趋势预测研究
旋转机械
趋势预测
新息加权神经网络
均值函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 加权交叉验证神经网络在水质预测中的应用
来源期刊 计算机工程与应用 学科 工学
关键词 神经网络 水质预测 交叉验证
年,卷(期) 2015,(21) 所属期刊栏目 工程与应用
研究方向 页码范围 255-258
页数 4页 分类号 TP39
字数 4474字 语种 中文
DOI 10.3778/j.issn.1002-8331.1310-0096
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李硕 湖南大学信息科学与工程学院 49 754 18.0 26.0
2 边耐政 湖南大学信息科学与工程学院 13 83 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (144)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (23)
二级引证文献  (10)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(7)
  • 参考文献(3)
  • 二级参考文献(4)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(7)
  • 引证文献(0)
  • 二级引证文献(7)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
神经网络
水质预测
交叉验证
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导