基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种PSO优化的SVR算法并应用于博物馆的环境温度预测。针对基本粒子群算法容易陷入局部最优值的问题,通过引入预测因子和斥力因子,提出一种动态更新速度和粒子并自适应权重的粒子群算法(DAPSO)。选定径向基函数作为SVR的核函数,分别使用PSO和DAPSO算法同时对c、γ和ε进行寻优,并建立温度预测模型。另外,模型采用交叉验证算法来避免过拟合。通过对比两种参数优化算法下模型对温度预测结果的均方误差和相关系数,证明本文提出的优化模型优于PSO-SVR模型。
推荐文章
应用灰关联分析的PSO-SVR工程造价预测模型
工程造价
PSO-SVR预测模型
粒子群优化算法
灰关联分析
基于PSO-SVR航站楼CO2浓度时间序列预测
支持向量回归
粒子群优化算法
航站楼
CO2浓度数据
时间序列预测
旅游客流量预测:基于季节调整的PSO-SVR模型研究
旅游客流量预测
粒子群算法
支持向量回归机
季节调整
均方差比较
基于 InSAR 监测和 PSO-SVR 模型的高填方区沉降预测
高填方区域
粒子群算法
支持向量机回归
形变预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进PSO-SVR馆藏文物保存环境温度预测
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 SVR DAPSO 温度预测模型 均方误差 相关系数
年,卷(期) 2015,(2X) 所属期刊栏目
研究方向 页码范围 183-186
页数 4页 分类号 TP18
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余翔 83 183 7.0 9.0
2 张云飞 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SVR
DAPSO
温度预测模型
均方误差
相关系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导