针对微博数据特点,采用降噪算法和条件随机场模型对微博数据进行词性标注,并对其中比重较大的谐音词使用贝叶斯方法进行词性二次纠正.首先利用新浪平台 API 和爬虫获取原始微博数据,再根据噪音特点人工制定规则进行降噪.由于条件随机场在中文词性标注中特征提取的优势,使用条件随机场模型对降噪后的微博语料词性标注.在此基础上,利用微博语料中谐音词比重较大的特点,将微博词语转化为拼音,根据贝叶斯方法计算得到谐音词的原生词候选,再根据词语的上下文建立谐音词和原生词映射,并利用原生词的词性已知的性质,对谐音词进行词性纠错.实验结果表明,该方法可以较好地标注微博未登录词,词性标注准确率达到95.23%.